Planned Value	PV	=	should have done according to plan and as percentage of BAC percentage of plan actually done times BAC expressed in \$	
Earned Value	EV	=		
Actual Cost	AC	=	actual money spent	
Budget at Completion	BAC	=	total planned work;	ject cost baseline
Equations:				
Cost Variance	CV	=	EV - AC	
Schedule Variance	sv	=	EV-PV	
Cost Performance Index	CPI	=	EV / AC	
Schedule Performance Index	SPI	=	EV / PV	
Estimate at Completion	EAC	=	BAC / CPI OR	$A C+B A C-E V$
Estimate To Completion	ETC	=	EAC - AC	at either current actual OR plan rate
Value at Completion	VAC	=	BAC-EAC	
To Complete Performance Index=	TCPI	=	(BAC - EV) / (BAC-AC	efficiency needed to stay on plan

1. Late and Overspent Project

2. Early and Underspent Project

BAC	900		=	$E V-A C$		CPI	\%	$E V / A C$	
PV	75	CV	+25	90	65		1.38	90	65
EV	90		=	$E V-P V$			\%	$E V / P V$	
AC	65	SV	+15	90	75	SPI	1.20	90	75

Estimate at Completion	=	$B A C /(E V / A C)$		If future work of project efficiency at CPI or AC as \% of EV
EAC at current actual	652	900	1.38	
		$A C+B A C-E V$		If future work of project efficiency at Planned rate
EAC at plan rate	875	$65+900-90$		
Estimate To Completion	actual/plan	$E A C-A C$		The expected cost to finish all remaining project work
ETC	587/810	652-65 or 875-65		
Value at Completion	=	$B A C-E A C$		
VAC	+248	900	652	
To Complete Performance	=	(BAC-EV)	$B A C-A C)$	
TCPI	0.97	900-0.90	900-65	<1 Easier to complete on plan

